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OBJECTIVE 

• Automated analysis and classification of Whole Slide Images (WSI) of Wistar
rat thymus and spleen into Normal (N) and Not-Normal (NN) categories based
on histological features using algorithms of Digital Image Processing and
Deep Learning.

• Establishment of efficacy of the system by comparison with results of
pathologists.

INTRODUCTION 

• Histopathological examination of animal tissue by pathologists forms a 
crucial part of preclinical drug toxicology.

• Conventionally pathologists spend valuable time manually scrutinising slides, 
majority of which are within normal limit.

• This manual method is time consuming, subjective and dependent on the 
experience and expertise of the reporting pathologist.

• In recent years, Machine Learning techniques have helped in providing 
increasingly reliable and accurate image analysis solutions in Digital 
Pathology.

• iADSS combines advanced algorithms of Image Processing with Deep 
Learning to Analyse and Classify Digital Histopathology Images from 
preclinical toxicology studies.

• We present results of this system that accurately classifies thymus and 
spleen digital histopathology images from Wistar rat into "Normal and
Not-Normal" categories. 

MATERIALS AND METHODS 

MATERIALS 

Specimen: 

• 300 WSI (whole slide images) of Wistar rat thymus and spleen each from
control & treated, belonging to preclinical toxicology studies.

• H&E stained slides of both male and female rats belonging to 14, 24 and 36
weeks age groups were used.

• Image Acquisition Device: Lei ca SCN400and Nanozoomer XR scanner
(40x magnification). 

• Image Format: Collection of tiles of fixed dimension (512x512 pixels) at four
different magnifications (40X, 1 OX, 2.5X, and 0.625 X) in the form of a
multi-resolution pyramid.

METHODS 

a) Training, Testing and Fine-tuning

• Knowledge transfer from pathology domain expert - Normal histological
parameters and possible abnormalities (non-proliferative, proliferative and
any other lesions).

• Preparation of training data set - Using collection of tiles from 600 images
taken at different magnifications (40X, 1 OX, 2.5X & 0.625X).

• Development of Deep Lab model - Segmentation of various tissue
parameters using Deep Learning.

• Result refinement - Based on observation of Not-Normal parameters in the
segmented regions of capsule, trabeculae, cortex, medulla, red pulp and white
pulp across thymus and spleen.

• Trained models of Deep Lab are deployed on the Test data to segment out the
tissue parameters.

• Test images are classified as Normal and Not-Normal based on variation in
structure and/or statistical properties (shape, size, count etc.) of the detected
parameter

• Testing & fine -tuning of models done based on test results & feedback from
pathologist

b) Validation

• 100 images from three age groups of Wistar rats randomly selected and
classified as Normal and Not-Normal.

• Results validated by internal reviewers and fine-tuned.

• Independent validation on new data-set of 100 images done by external
experts.
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Diagram 1: Process of Flow for Image Classification using Deep Learning 

THYMUS 
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Figures 1 & 2: H & E stained images of thymus showing ectopic 
parathyroid gland (5X & 20X magnifications) 

SPLEEN 
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Fig 3: H & E stained image 
of thymus showing ectopic 

thyroid gland (5X magnification) 

Figure 6 

Figure 5 & 6: H & E stained images of spleen showing 
capsular mononuclear cell infiltration (5X & 20X magnifications) 

Figure 4 

Fig 4: H & E stained image 
of thymus showing epithelial 

tubule/cyst (1 OX magnification) 

RESULTS 

The normal accuracy (percentage of images correctly classified as "Normal") 
on automated classification of thymus and spleen images were 100% during 
the external validation.

Pathologist's Resu Its 
Not-Normal Normal 

TP = 20 FP = 20 Not-Normal AccuracyNot-Normal  (PPV)= TP/(TP+FP) 
iADSS Resu Its 

FN = 0 TN = 60 Normal Accuracy Normal 
(NPV)= TN/(FN+ TN) 

Sensitivity= 
TP/(TP+FN) 

Specificity= 
TN/(TN+FP) 

100 7 5

Table 1:Validation result of thymus 

Pathologist's Results  
Not-Normal Normal 

TP = 3 FP = 2 Not-Normal Accuracy Not-Normal  
(PPV)= TP/(TP+FP) 

iADSS Resu Its 
FN = 0 TN = 95 Normal Accuracy Normal (NPV)= TN/(FN+ TN)

Sensitivity= 
TP/(TP+FN) 

Specificity= 
TN/(TN+FP) 

100 97.94 

Table 2: Validation result of spleen 

(TP:True Positive, TN:True Negative, FP: False Positive, FN: False Negative, PPV: Positive 
Predictive Value, N PV: Negative Predictive Value) 

Accuracy measures for iADSS: 

50 

100 

60 

100 

• Normal Accuracy: Percentage of images correctly classified as "Normal"

• Not-Normal Accuracy: Percentage of images correctly classified as "Not
Normal"

CONCLUSION/FUTURE DIRECTION 

• iADSS produced accurate analysis and classification of thymus and
spleen histopathology images of Wistar rat into Normal and Not-Normal
categories.

• Results were comparable with Pathologist results

• iADSS can serve as an effective decision support system in preclinical 
toxicology studies for Wistar rat and thus helpful in expediting drug 
development process. 
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